Clinical measurement of pelvic floor muscle activity commonly involves techniques that are both physically and psychologically invasive. This study investigated transabdominal application of ultrasound to measure pelvic floor muscle action. The specific aims were to establish the face validity of ultrasound measures of displacement of the posterior bladder wall as a reflection of pelvic floor muscle contraction, and the reliability of measurement between raters and between testing occasions. Non-pregnant adult female subjects aged 24 to 57 years were tested in lying with a 3.5 MHz 35 mm curved array ultrasound transducer over the lower abdomen. Posterior bladder wall displacement was observed in both sagittal and transverse planes. Digital vaginal palpation and transabdominal ultrasound were undertaken simultaneously during pelvic floor muscle contractions to confirm that pelvic floor contractions were performed correctly and to grade pelvic floor muscle strength. Displacement (mm) was measured using electronic calipers on the ultrasound monitor screen. In all subjects, a correct pelvic floor muscle contraction was confirmed on digital palpation, and consistent anterior and cephalic movement was observed on screen. Digital strength grading did not correlate with muscle palpation performed vaginally or per rectum, is considered the ‘gold standard’ (Peschers et al 1998). Generally, it is used in combination with a muscle strength grading scale (Laycock 1994), although evidence does not support it as a reliable tool particularly between testers (Bø and Talseth 1996). A consistent problem with perineometry is the potential of false-positive measurements as a result of trick manoeuvres (Bump et al 1996, Peschers et al 1998, Morkved and Bø 1997). The application of diagnostic ultrasound for imaging the pelvic organs and structures is not new, however a transabdominal approach has not yet been evaluated in relation to pelvic floor muscle function. Dietz et al (1998) used ultrasound to visualise pelvic floor muscle activation via trans-perineal application. However, to our knowledge no study has investigated the personally non-invasive (i.e. neither internal nor perineal) application of ultrasound to examine or measure the activity of pelvic floor muscles. The specific aim of this study was to establish the validity and reliability of transabdominal ultrasound image-derived measures of bladder wall displacement as a reflection of pelvic floor muscle action in sagittal and transverse plane imaging.

The application of diagnostic ultrasound for imaging the pelvic organs and structures is not new, however a transabdominal approach has not yet been evaluated in relation to pelvic floor muscle function. Dietz et al (1998) used ultrasound to visualise pelvic floor muscle activation via trans-perineal application. However, to our knowledge no study has investigated the personally non-invasive (i.e. neither internal nor perineal) application of ultrasound to examine or measure the activity of pelvic floor muscles. The specific aim of this study was to establish the validity and reliability of transabdominal ultrasound image-derived measures of bladder wall displacement as a reflection of pelvic floor muscle action in sagittal and transverse plane imaging.

Clinical measurement of pelvic floor muscle activity commonly involves techniques that are both physically and psychologically invasive. This study investigated transabdominal application of ultrasound to measure pelvic floor muscle action. The specific aims were to establish the face validity of ultrasound measures of displacement of the posterior bladder wall as a reflection of pelvic floor muscle contraction, and the reliability of measurement between raters and between testing occasions. Non-pregnant adult female subjects aged 24 to 57 years were tested in lying with a 3.5 MHz 35 mm curved array ultrasound transducer over the lower abdomen. Posterior bladder wall displacement was observed in both sagittal and transverse planes. Digital vaginal palpation and transabdominal ultrasound were undertaken simultaneously during pelvic floor muscle contractions to confirm that pelvic floor contractions were performed correctly and to grade pelvic floor muscle strength. Displacement (mm) was measured using electronic calipers on the ultrasound monitor screen. In all subjects, a correct pelvic floor muscle contraction was confirmed on digital palpation, and consistent anterior and cephalic movement was observed on screen. Digital strength grading did not correlate with muscle palpation performed vaginally or per rectum, is considered the ‘gold standard’ (Peschers et al 1998). Generally, it is used in combination with a muscle strength grading scale (Laycock 1994), although evidence does not support it as a reliable tool particularly between testers (Bø and Talseth 1996). A consistent problem with perineometry is the potential of false-positive measurements as a result of trick manoeuvres (Bump et al 1996, Peschers et al 1998, Morkved and Bø 1997). The application of diagnostic ultrasound for imaging the pelvic organs and structures is not new, however a transabdominal approach has not yet been evaluated in relation to pelvic floor muscle function. Dietz et al (1998) used ultrasound to visualise pelvic floor muscle activation via trans-perineal application. However, to our knowledge no study has investigated the personally non-invasive (i.e. neither internal nor perineal) application of ultrasound to examine or measure the activity of pelvic floor muscles. The specific aim of this study was to establish the validity and reliability of transabdominal ultrasound image-derived measures of bladder wall displacement as a reflection of pelvic floor muscle action in sagittal and transverse plane imaging.
comfortably and head supported with pillows, observing the ultrasound screen if they chose. The ultrasound transducer was applied to the lower abdomen in the mid-line. Subjects performed a series of pelvic floor muscle contractions prior to recording to ensure correct technique and for appropriate placement and angulation of the ultrasound transducer. The clearest bladder wall displacement during a pelvic floor muscle contraction was observed when the angle from the vertical in a cephalic direction was between 15 and 30 degrees.

After this initial practice, subjects performed three maximal pelvic floor muscle contractions so that displacement of the posterior bladder wall, as a result of a pelvic floor muscle contraction, could be measured. A clearly defined edge, at the point of greatest observed displacement clearly visible throughout the movement, was selected for measurement. The position of this point at rest was marked electronically with an ‘X’. The subject then performed a maximum voluntary pelvic floor muscle contraction and the image was captured at the moment of maximum displacement. At this time the subject relaxed the pelvic floor muscles. The investigator then measured the displacement to its current position in the stilled image (Fig. 1) and was blinded to the measurement value until after the calliper had been fixed at the end point. The ultrasound transducer was not moved during the procedure to ensure the field of vision remained constant between rest and maximal contraction. The mean of three measurements in each plane by a single investigator was used for statistical analysis for each study.

Validation study
A digital vaginal examination, the standard Australian clinical practice, was considered the most appropriate outcome measure for validation of pelvic floor muscle contraction using transabdominal ultrasound. An experienced investigator performed the digital examination, noted any fascial or relevant anatomical pathology, and confirmed whether correct muscle activation occurred when the subject performed three pelvic floor muscle contractions. Simultaneously, the second investigator observed the displacement occurring on ultrasound during the muscle contractions.

In addition, the first investigator also graded pelvic floor muscle strength according to the modified Oxford method (Laycock 1994). Ultrasound displacement of pelvic floor muscle contraction was measured in separate trials immediately following the digital strength grading, as distortion of the tissues occurred during digital examination. The two investigators remained blind to each other’s assessment of pelvic floor muscle activation during the testing process.

Reliability study
Subjects were tested on two occasions up to five days apart. The investigators and planes of imaging were both randomised to avoid order effects. Subjects performed a series of three maximum voluntary pelvic floor muscle contractions for both sagittal and transverse plane measurements with each tester. Immediately after testing, subjects voided into a collection unit fitted under the toilet seat, and measured the voided bladder volume to the nearest 25 ml. Another ultrasound scan was used to test for residual bladder volume.

Data management
Reliability was analysed using the intraclass correlation coefficient (ICC, model 1,3 for intra-rater reliability and model 2,3 for inter-rater reliability) and 95% confidence intervals (CI). In addition, consistency of repeated responses over time was measured and expressed as the standard error of measurement (SEM).

Results
Validity study
In all ten subjects, a correct pelvic floor muscle contraction was confirmed on digital palpation, and the movement observed on ultrasound imaging was consistent between subjects. In the sagittal plane view, a correctly performed pelvic floor muscle contraction resulted in posterior bladder wall displacement in an anterocephalic direction, incorporating a vertical and horizontal component on the monitor. Horizontal displacement reflected movement in a cephalic direction (the ‘lift’ component of pelvic floor muscle contraction). Vertical displacement was indicative of the anterior draw of the pelvic floor muscles, toward the pubic symphysis. The direction of displacement was in agreement with the direction of movement palpated by the first investigator.

In the transverse plane, a correct pelvic floor muscle contraction confirmed by digital palpation was characterised
by displacement in a vertical direction on the monitor, representing predominantly a cephalic direction of pelvic floor muscle movement. The anterior draw was not evident in this plane as the displacement was more perpendicular to the direction of the ultrasound waves.

For further confirmation, subjects were also requested to perform the manoeuvre of bearing down. Caudal fascial displacement was observed in both planes of view, clearly distinguishable from images obtained during a pelvic floor muscle contraction. Contraction of the gluteal muscles resulted in a displacement image similar to that of a correct pelvic floor muscle contraction; however the movement associated with this contraction and any other hip muscle recruitment was immediately obvious to the investigator.

A Pearson correlation coefficient, calculated to investigate the relationship between displacement measures taken in the sagittal and transverse planes, was 0.38, indicating a weak relationship. Spearman correlation coefficients indicate that there is no relationship between displacement in the sagittal (r = -0.13) or the transverse planes (r = 0.21) and manually graded muscle strength.

Reliability study Average measure ICC values with 95% CI and the standard error of the measurement were calculated within investigator and between investigators in both planes (Table 1).

These ICCs indicate good agreement for a single investigator between measurement occasions and good agreement between investigators during the same measurement occasion. The standard errors of measurement are low and represent a small percentage of total displacement.

Bladder volumes ranged between 100 ml and 800 ml at each testing occasion, mean volume at Test 1 being 499 ml, and at Test 2, 505 ml. No subject recorded any residual volume after voiding.

Discussion

Validity of transabdominal ultrasound We have shown that displacement of the bladder wall observed using ultrasound imaging, reflects pelvic floor muscle action. Real-time ultrasound can immediately confirm whether the correct muscle action has been performed. Corroboration via digital palpation may therefore not be necessary in determining correct pelvic floor muscle action. Peschers et al (1998) and Bø and Finckenahen (2001) stated that digital palpation was the only way to ensure a correct pelvic floor muscle contraction was being performed and remained the gold standard. Digital examination is important for palpating components of pelvic floor dysfunction, such as muscle defects, tone, or pain, but it is not the only method to assess pelvic floor muscle action.

This study clearly demonstrated that the displacement observed with a correct pelvic floor muscle contraction was easily identifiable and distinguishable from incorrect technique. The direction of displacement of the bladder wall as a result of a pelvic floor muscle contraction is corroborated by the findings of Dietz et al (1998), Dietz et al (2002), Reddy et al (2001) and Thompson et al (2003), although the different applications of ultrasound (perineal versus transabdominal) result in a different direction of displacement when viewed on the monitor.

There was, however, poor agreement between displacement measures in the sagittal and transverse planes. This suggests that displacement measures in the two planes reflect different vector components of a pelvic floor muscle contraction. The poor agreement between displacement values (in either plane) and manually graded muscle strength suggest that these measures, too, reflect different aspects of pelvic floor muscle action. This interpretation is in agreement with the findings of Dietz et al (1998), Dietz et al (2002), Reddy et al (2001) and Thompson et al (2003), although the different applications of ultrasound (perineal versus transabdominal) result in a different direction of displacement when viewed on the monitor.

Table 1. Intra-rater and inter-rater ICC values and SEM (n = 20).

<table>
<thead>
<tr>
<th>Intra-rater reliability</th>
<th>Sagittal plane</th>
<th>Transverse plane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Session 1</td>
<td>Session 2</td>
</tr>
<tr>
<td>Mean displacement (mm)</td>
<td>9.31</td>
<td>8.96</td>
</tr>
<tr>
<td>SEM (mm)</td>
<td>0.22</td>
<td>0.57</td>
</tr>
<tr>
<td>SEM as % of mean</td>
<td>2.34</td>
<td>6.38</td>
</tr>
<tr>
<td>ICC (95% CI)</td>
<td>0.89 (0.72 to 0.96)</td>
<td>0.84 (0.61 to 0.94)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-rater reliability</th>
<th>Sagittal plane</th>
<th>Transverse plane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rater 1</td>
<td>Rater 2</td>
</tr>
<tr>
<td>Mean displacement (mm)</td>
<td>9.89</td>
<td>10.33</td>
</tr>
<tr>
<td>SEM (mm)</td>
<td>0.22</td>
<td>0.46</td>
</tr>
<tr>
<td>SEM as % of mean</td>
<td>2.18</td>
<td>4.42</td>
</tr>
<tr>
<td>ICC (95% CI)</td>
<td>0.88 (0.73 to 0.95)</td>
<td>0.86 (0.81 to 0.97)</td>
</tr>
</tbody>
</table>
there is a single tool available to fully assess the function of
the pelvic floor muscles.

Reliability of transabdominal ultrasound The ICC values
indicate that the between-session intra-rater reliability and
within-session inter-rater reliability were very similar.
Reliability was generally better in the sagittal than in the
transverse plane. However, the standard error of measurement
indicated that there was as much variability due to the
operator as the plane of measurement. Errors in the transverse
plane of imaging may be due to the variation in angulation of
the transducer due to different abdominal contours. The
sagittal plane was prone to variation if the transducer was not
directly in the midline, correctable by aligning the transducer
with the navel and pubic symphysis.

Subjects were tested at about the same time of day, following
the same filling protocol, yet could have quite different
bladder volumes on the two test occasions, indicating that
bladder volume itself did not influence the displacement
measures. Hence a strict bladder filling protocol may not be
necessary.

Limitation of transabdominal ultrasound Ultrasound
imaging to measure displacement of the bladder neck (Dietz
et al 1998, Reddy et al 2001) uses a fixed starting point for
measurement, the pubic symphysis. However, using
transabdominal ultrasound there is no bony landmark within
view, meaning that pelvic floor displacement can only be
expressed relative to a potentially mobile starting point. This
may be a problem in establishing normative displacement
values.

Conclusion

Transabdominal application of diagnostic ultrasound to
assess pelvic floor muscle function is valid and reliable, and
personally non-invasive. An objective assessment of pelvic
floor muscle activity where an invasive procedure is
inappropriate has not been possible previously.

Footnotes Dornier Medtech, USA

Correspondence Margaret Sherburn, School of
Physiotherapy, The University of Melbourne. Email:
m.sherburn@unimelb.edu.au

References

Be K and Finckenhen H (2001): Vaginal palpation of pelvic floor

Bump R, Mattlssion A, Be K, Brubaker L, DeLancey J, Klarkskov
P, Shull B and Smith A (1996): The standardization of
terminology of female pelvic organ prolapse and pelvic floor

quantifying levator activity and teaching pelvic floor muscle

Dietz HP, Jarvis SK and Vancallie TG (2002): The assessment of
levator muscle strength: A validation of three ultrasound

Laycock J (1994) Clinical evaluation of the pelvic floor. In
Schussler B, Laycock J, Norton P and Stanton S (Eds): Pelvic
Floor Re-education. Principles and Practice. London: Springer-

Morkved S and Be K (1997): The effect of postpartum pelvic floor
muscle exercise in the prevention and treatment of urinary
incontinence. International Urogynecology Journal and Pelvic
Floor Dysfunction 8: 217–222.

screen vector-based ultrasound assessment of vesical neck
movement. American Journal of Obstetrics and Gynecology
185: 65–70.

Thompson JA and O’Sullivan PB (2003): Levator plate movement
during voluntary pelvic floor muscle contraction in subjects with